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Abstract 

Poisson algebras on current manifolds (of maps from a finite-dimensional manifold into a two- 
dimensional manifold) are investigated using symplectic geometry. It is shown that there is a one- 
to-one correspondence between such current manifolds and Poisson current algebras with three 
generators. A geometric meaning is given to q-deformations of current algebras. The geometric 
quantization of current algebras and quantum current algebraic maps is also studied. 0 1998 Elsevier 
Science B.V. 
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1. Introduction 

Current algebras were first studied in particle physics [ 11. The primary ingredients of cur- 
rent algebras are the sets of equal-time commutation relations for the physically conserved 
currents [2]. Mathematically, current algebras are maps from a (compact) manifold N to an 
algebra g. When N is the one-dimensional manifold St, current algebras are usually called 
loop algebras (see e.g. [3-61). The representation theory of current algebras has been studied 
quite extensively, see e.g. [3-51. In connection with the theory of integrable systems certain 
infinite-dimensional “classical Poisson algebras” have been investigated, see e.g. [7]. 
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In the present paper we study certain current algebras associated with maps from a 
finite Riemannian manifold into a two-dimensional (2D) Riemannian manifold (some of 
the considerations however are independent of the chosen Riemannian structures). We call 
these manifolds “2D current manifolds”. By investigating the symplectic geometry on these 
2D current manifolds, we show that there is a one-to-one correspondence between 2D current 
manifolds and Poisson current algebras with three generators, including current Lie algebras 
and q-deformed current Lie algebras, which gives an infinite-dimensional extension of the 
corresponding results in the finite-dimensional case [8,9]. By geometric quantization, we 
get corresponding quantized current algebras and related current manifolds in quantum 
version. Both the Poisson current algebraic maps (resp. quantum current algebraic maps) 
can then be investigated in terms of the corresponding classical (resp. quantum current) 
manifolds. 

We first recall in Section 2 some notations of infinite-dimensional symplectic geome- 
try referring to [lO,ll] for background. In Section 3 we study the symplectic geometry 
on 2D current manifolds and establish relations between Poisson current structures and 
2D current manifolds. As applications, we discuss in Section 4 some special 2D current 
manifolds and their related Poisson current manifolds. Section 5 is dedicated to Poisson 
current algebraic maps in terms of the corresponding current manifolds. We investigate the 
geometric quantization of current algebras in Section 6 and give some concluding remarks 
in Section 7. 

2. Symplectic geometry on current manifolds 

The basic object in symplectic geometry is a symplectic manifold which is an even- 
dimensional manifold equipped with a symplectic two-form, see e.g. [11,12]. Let M be a 
connected even-dimensional Riemannian manifold and N an arbitrary finite-dimensional 
Riemannian manifold equipped with a finite reference measure CL. A current manifold MN 
is the space of smooth mappings from N to M, which can be equipped with the topology 
of a Banach manifold, see e.g. [4]. Let 6 denote the exterior derivative on M. By definition 
a symplectic form w on MN is a two-form on M with parameters in N, which is: (i) closed: 
SOJ = 0 and (ii) non-degenerate: XJw = 0 =+ X = 0, where X are vector fields on MN 
and 1 denotes the left inner product defined by (X]@)(Y) = w(X, Y) for any two smooth 
vector fields X and Y on MN. It is possible to show that such symplectic forms exist on 
MN, see e.g. [ IO,1 I] (for the case dim(M) = 2 we discuss this below). 

Canonical transformations are by definition w-preserving diffeomorphisms of MN onto 
itself. A vector X on MN corresponds to an infinitesimal canonical transformation if and 
only if the Lie derivative of w with respect to X vanishes, ,CXW = X]Sw + 6(Xlw) = 0. 
Such a vector X is said to be a Hamiltonian vector field. Since w is closed, it follows that 
a vector X is a Hamiltonian vector field if and only if XJS is closed. Let F(MN) denote 
the real-valued smooth functions on MN. For f‘ E .?=(MN), since o is non-degenerate there 
exists a Hamiltonian vector field Xf (unique up to a sign on the right-hand side of the 
following equation) satisfying 



Xf]W = -sf: (I) 

The Poisson bracket [f; g]pu of two smooth functions .f’ and g in .T(MN) is defined to 
be the function -w(Xf, X,). It satisfies the identities: 

[,f, g]Pn = -w(Xf. X,) = W(X,q. Xf.) = -Xf.X = X,f. (2) 

According to Whitney’s embedding theorems we can smoothly embed N (resp. M) in 
Euclidean spaces of dimensions n(( 2(dim N + I)) (resp. tn(s 2(dim M + I))), see e.g. 
1131. Let x (resp. S) be local coordinates of the so embedded manifold N (resp. M). Let 
S;.i = I..... m, be the components of S. The basis of the tangent vectors (resp. cotangent 
vectors) of the Banach manifold MN are then (S/S&(x)] (resp. {SS;(x))), i = 1. . , m. 
For fixed x. St (x), . , S,,(x) can be looked upon as orthogonal smooth vectors spanning 
the tangent space at x E N to M. In analogy with the finite-dimensional situation (see e.g. 
[ 111) we can define an innner product between the bases of tangent vectors on MN and two 
forms of MN 

T&18sjiY) A 8&(z) 
I 

= s;ja(X - Y)ssk(Z) - S;kS(X - Z)SSj(J'), i, ,j> k = 1, . . , m 

(where 6(.) is the usual 6 function on N and S;j = 1 for i = ,j, S;j = 0 for i # ,j). This 
equality is to be understood in the sense of generalized functions (using the natural pairing 
given by the Riemann-Lebesgue volume measures on N and M). 

3. Poisson current algebraic structures on 2D current manifolds 

In the following we take M to be a two-dimensional Riemannian manifold smoothly 
embedded into [w3. Let, as in Section 2, Si, i = 1, 2, 3, be the coordinates of M in R” and x 
the coordinate vector of the manifold N in [w” (n is as in Section 2). We consider a general 
“2D current manifold” MN defined in terms of some smooth real-valued function F on R’ 

by 

F(; (x)) = 0, x E N. (3) 

S denoting the values of S = (St, S2, Sj) for which (3) holds. The Poisson algebraic 
structure on the current manifold (3) is determined by the corresponding symplectic structure 
on it. 

Let for general S = (S;, i = 1, 2, 3) E MN 

F(S) = s F(S)(x)) dE.L(x), 
N 

where p is the Riemann-Lebesgue volume measure of the Riemannian manifold N. We 

look at IF as a real-valued smooth functional of S = (Si , i = 1, 2, 3). When S =S then 
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(3) holds, hence F(S) = 0. We define 6F/6Sj(X) as the smooth functional of S s.t. for 

hj E C(N) 

s 65(S) 
hi(X)- dp(x) G SIF(S: hj) E fii 

ff(S’h~) - IF(S) 

Ssj(X> t 

with SE’*; = (. . . , Sj+ E hj, . .), j = 1, 2, 3. SF(S; hj) is thus the derivative of F at S in 
the direction hj. We assume that N is compact (or that p and the functions to be integrated 
against it which occur in our formulae are such that all integrals are finite). 

The Hamiltonian vector fields Xs, cx), resp. the symplectic form, on MN have the following 
general forms: 

(4) 

resp. 

(5) 

where Ai (x) and Bi (x), i = 1, 2, 3, are some smooth functions of S(x) satisfying Eq. ( 1). 
Their determination is given in the following proposition. 

Proposition 1. The Hamiltonian vector$elds associated with S = (Si(x), i = 1. 2. 3) E 
MN are more precisely given by 

(6) 

where u is a real constant and ci jk is the completely antisymmetric tensor: 

ProoJ: By definition a Hamiltonian vector field Xf associated with ,f E F(MN) should 
satisfy Eq. (1). Substituting (4) and (5) into Eq. (1) we have (in the sense of generalized 
functions) 

X [8km~Srt(y) - ~krd%?(y)l dF.(y) 

15 =-_ ~/rnnAj(X)Bt(X)[~ij,SSn(X) - Eijn~Sm(x)I 
jlmn=l 

=- c E;jrnEtmnAj(X)B/(~)~Sn(X) 
jlmn=i 

= -SS;(x). i = 1,2,3. (7) 



For i = I we have X,slruijti = -6Sr(x). ix. 

-(Am)& + AJ(xIB~(x))SSI(X) + A?(x)Bl(x)SSz(x) 

+ A.J(x)BI (x)G&(x) = -6s1 (x). 

AS;(x), i = 1. 2, 3, are not linearly independent. in fact from Eq. (3) we have 

c-- 3 ws)~s, 
;=, 6s; ’ N 

= 0. 

Using relation (8) we get 

@(S) 
A?(x) = (;yp 

6F(S) 

8S2W’ 
Aj(x) = (Y- 

8&(x) 

for some real constant a and 

c SF(S) 
(2 Bl(X)------ 

6&s,(x) + B2(X) s + h(x)--- sF(s) = 1. 

6 s3 (x> > 

Combining this with the corresponding results from (7) with i = 2, 3 we obtain 

SE(S) 
A;(X) = CI~ 

6s; (x) - 
i = 1.2,3 

and 

3 

a c JE(S) 1  

Bi(X)- = 

i=l 
6 Si (Xl 

(9) 

(10) 

Substituting Eq. (9) into (4) we get (6). 0 

Remark 1. It is easily seen that Ai is independent of the coefficients Bi(x), i.e., the 
Hamiltonian vector field associated with S;(x) is independent of the construction of the 
symplectic form w on MN. Owing to the equivalence of Hamiltonian vector fields in the 2D 
case [8], for simplicity the factor (Y will be taken from now on to be l/2 (different values 
of (;Y give rise to the same algebra up to an algebraic isomorphism). 

Proposition 2. The two-form o given by (5) is a symplectic form on MN @‘Bi (x), i = 
1, 2, 3, satisfy condition (IO). 

Proojf It is manifest from the proof above that condition (10) is necessary and sufficient 
for w to satisfy formula (1). Further, due to the fact that M is a 2D manifold, o is obviously 
closed, i.e., 6w = 0. 0 

On finite-dimensional manifolds with a symplectic structure one can define Poisson 
algebraic structures. In a similar way we define the “Poisson current algebraic structures” 
on current manifolds equipped with a symplectic structure. 
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Theorem 1. The Poisson current algebraic structure on the manifold MN is (uniquely) 
given by 

[si(X), sj(y)lPB = i ecijkg8(X -y)* 

k=l 

(11) 

the equality being in the sense of generalized,filnctions over N. 

P root From formula (2) and Proposition 1 (with 01 = l/2) we have 

LSi (X)3 Sj (y)lPB = -X.S,(,) Sj (Y) 

1 
3 

=-c 
6US) 

2 
-8(x-y). 0 

kl ti,jk S&(x) 

This Poisson current algebra is independent of the symplectic form on MN, and is uniquely 
given by the current manifold [F(S) = 0 under the algebraic equivalence discussed in [Sl. 

Proposition 3. For f E 3( MN), the Hamiltonian vectorfield associated with f is given b> 

Sf SF(S) 6 
--- 

“jk 6S;(y) SSj(Y) 8Sk(y) 
b(y). 

ProoF We have to prove Xf]w = -Sf. From 

-----S;(x) h(x), 

and Proposition 1 we have 

2 

-6Si (X) = XS;~.,,]O = i C tijk 
.jk=l 

Therefore 

Sf SF(S) 6 --- 
“j”SSi(J’) SSj(y) sS/,(y) 

d/L(Y)_lW. 

Comparing above formula with the condition Xf]w = -Sf we get formula (12). cl 

(12) 

Theorem 2. For f, g E .F(MN), the Poisson bracket off and g is given b) 

(13) 

P roqf: This is a direct result of Proposition 3 and formula (2). 
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Generally, Poisson current algebras are by detinition maps from the compact manifold N 
to finite-dimensional algebras. equipped with a Poisson bracket. Let us consider a general 
Poisson current algebra 

3 

[St(X), sj(y)lPB = xcijk.fk(S(x))fi(X -y). X. y E A’, s E R’ (14) 
k=l 

(in the sense of distribution on N), where ,fj, i = 1. 2, 3, are smooth functions of S taking 
values on a finite-dimensional manifold N and Si (x), i = 1, 2. 3, satisfy the Jacobi identity. 

Definition. Ifthe .f;, i = 1, 2, 3, satisfy 

y E N, i, j = 1,2,3. (15) 

then the algebra (14) is said to be integrable. 

Remark 2. The “integrability condition” ( 15) is a sufficient condition for a general Poisson 
current algebra (14) to satisfy the Jacobi identity, 

IsI( [sZ(Y)t S3@)lPBlPB + [s2(Y), Is3b). ~I(x)lPBlPB 

+ [s3@), [sl (xl. S2b)IPBIPB 

Remark 3. Comparing formula (11) with formula (14) we see that the f; (S(x)) in the 
Poisson current bracket (11) on M,v is given by 

.f;(S(x)) = ;gg. (16) 

where IF(S) = sN F(S(x)) dp(x). As F E .F(M,v) we have 

a2F(S) ifI* F(S) 

aSiaSj ,, = as,asi ,” 
p E N, i, j, = 1, 2, 3. 

Therefore the fi in (16) satisfy the integrability condition (15) and all the Poisson current 
algebras (11) in Theorem 1, over the current manifold M N, considered in this section are 

integrable. 

Theorem 3. Let M and N be Riemannian manifolds smoothly embedded in [w3 and [Wn, 
respectively. For a given integrable current Poisson algebra (14), there exists a symplectic 
current manifold MN described by an equation of the form sN F(S(y)) dy = C, with 
S(y) E M, y E N, F E F(MN) and c an arbitrary real numben such that the Poisson 
current algebra generated by (S(y), y E N. S E MN} coincides with the algebra (14). 
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Proo$ A general integrable Poisson algebra is of the form (14), with fi, i = 1, 2, 3, 
satisfying the integrability condition (15). What we have to show is that this Poisson algebra 
can be described by the symplectic geometry on a suitable symplectic current manifold 
(MN, w), in the sense that the above Poisson current bracket can be described by formula 
(2), i.e., the Poisson current bracket [Si(x), Sj(y)]pa is given by the Hamiltonian vector 
field XS,(~) associated with S;(x) such that 

[Si(X), sj(Y)IPB = -xS,(x)sj(y) = &Eijifk(S(x))G(X - y). 
k=l 

(17) 

Let X’ s,(x) be given by 

3 
6 

X$, (x) E C cijk fj (X) -. 
jk=l ssk(x) 

(18) 

Then X&,, satisfies (17) with X replaced by X’. 

A general two-form w’ on F$, has the form (5). We have to prove that S E [w; can 
be restricted to a suitable two-dimensional manifold M c lR3 in such a way that Xi I(X) 
coincides with the Hamiltonian vector field XsiC,, and w’ is the corresponding symplectic 
formwon MN. 

A two-form on MN is always closed. What we should then check is that there exists 
M c R3 such that for S restricted to M formula (1) holds for ,f = St(x), i.e., 

x&Jw’ = -SSj(X), i = 1.2, 3. (19) 

Substituting formulae (18) and (5) into (19) we get 

XQJ’ = - 6 ” ~rJmE/mnfj(X)B/(X)SSn(X) = -SSi(X). 
jlmn=l 

That is. 

(1 - .f264B2(X) - f3(x)B3(X)MSI(X) +f2(X)BlwS2(x) 

-+f3WB1WS3(x) = 0 

and cyclically. 

(20) 

Let us now look at the coefficient determinant D of the SSi (x) in the system (20). By a 
suitable choice of (Bt , B2, B3) we can obtain that D is zero. This is in fact equivalent with 
the equation 

.fi(x)Bt(x)+ fi(x)B2(x)+f3(x)B3(~) = 1 (21) 

being satisfied. The fact that D = 0 implies that there exists indeed an M as above. 
Substituting condition (21) into (20) we get 

fl(X)~Sl(X) + f2w~~2(74 + f3(xPS3(x) = 0. (22) 



From assumption (15) we know that the differential equation (22) is exactly solvable, in the 
sense that there exists a smooth (potential) function F E jr( MN ) and a constant (‘ such that 

IF(S) = /” F(S(y))dy = c (23) 

N 

and SLF/SSi (x) = fi (S(X)). The above manifold MN is then described by (23). 
Therefore for any given integrable Poisson current algebra there always exists a current 

manifold of the form (23) on which XkIcx, in ( 18) is a Hamiltonian vector field and the 

Poisson bracket of the current algebra is given by X’ S(X) according to the formula (17). 
The current manifold defined by (23) is unique (once c is given). Hence an integrable 

Poisson current algebra is uniquely given by a current manifold MN described by E(S) = 
JN F(S(y)) dy = c for some F and c. 0 

4. Poisson algebraic structures on some special current manifolds 

In this section we discuss Poisson algebraic structures on some special current manifolds, 
which give rise to special current extensions of Poisson-Lie algebras and q-deformed Lie 
algebras. In all examples below x takes values in a Riemannian manifold N, smoothly 
embedded in KY. 

(a) We first consider a “current 2D sphere” given by 

ST(x) + S;(x) + S_?(x) = S,z, (24) 

where Sn is a real constant # 0. 
M is then here the sphere in aB’ of radius SO. From Theorem 1 we have the Poisson 

relations (in the sense of distributions), 

3 

[S;(X), sj(y)IPB = CtijkS&(X)S(X- y) (25) 
k=l 

The algebra defined by (25) is a current extension of the Poisson algebra SU(2) (cf. see 
e.g. [ 1,2,5,14]). 

A symplectic form on the current manifold MN can be constructed by using formula (5) 
and condition (10). From (10) and (24) we have 

Bl(X)Sl(X) + B2(x)S2(x) + h(x)&(x) = 1. 

Comparing this with Eq. (24) we can simply take Bi(x) = &(x)/S:. Therefore from (5) 
we obtain the following symplectic form: 
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(b) We now consider a “q-deformed current 2D sphere” defined by 

(27) 

where y = log q, q E R\(O} is the deformation parameter. Heuristically, when y -+ 0, the 
manifold (27) becomes the current 2D sphere (24). 

For the manifold (27), Theorem 1 gives rise to the following Poisson algebraic relations 
(again written in the sense of generalized functions): 

sinh 2y So 
[S+(x), s-(Y)lPB = -1 s i n h  y  66 - Y). 

[G(x). &(y)lp~ = WiW(x - Y). 
(28) 

where S&(x) = St(x) f i&(x) and i = 2/-1. 
The algebra (28) is just the current extension of the q-deformed Poisson-Lie algebra 

SU, (2) [ 151. It is isomorphic (up to a factor i) to the current extension of the “quantum” 
algebra sU,(2), but is here classically realized, which means that the q-deformation and 
physical h-quantization of the current extended algebras are independent, like in the case of 
Lie algebras [9,16]. Both current extended Lie algebras and current extended q-deformed 
Lie algebras can thus be realized at classical as well as at quantum levels (see Section 6). 

The symplectic form of this example can be similarly obtained from condition ( IO) and 
Eq. (27): 

y sinh y 

” = - (sinh y&)2 .I[ 
Sl (x)JS2(x) A 6SJlX) 

N 

+ Sz(xV&(x) A as1 6) 

+ 
tanh y S3 (x) 

J~I(x) A 6S2(x) b(x). 
Y I 

(c) The “current elliptic paraboloid’ is defined by 

SF(x) + $(x) - &(x) = ;. 

(29) 

cm 
From formula (1 1) we have, in the sense of generalized functions: 

rs1 (x>, S2(Y)lpE3 = -$m - Y), 

[S2@), &(Y)lPB = Sl (XPb -Y)* (31) 

[&W, $1 (Y)Ipe = S?W(X - Y). 

This is just the current extension of the Poisson simple harmonic oscillator algebra ‘Ft 

(4) [171. 
The corresponding symplectic form can be obtained by using formulae (5) (10) and 

Eq. (30): 



30 

+ ~S~(X)SSI 6) A S&(x)1 k(x). 

(d) The “q-deformed current elliptic paraboloid” is defined by 

s:(x) + s,2 (x) - 
sinWy&(x)) sinh y 

2 y cash y = 2y cosh( y) ’ 

(32) 

(33) 

where again y = log q, q E R\ (0) is the deformation parameter. 
The algebra on this current manifold is the q-deformed current extension of the simple 

harmonic oscillator algebra of %FI, (4) considered in [ 181 and is described (in the sense of 
generalized functions) by: 

[sl(x)t S2691PJj = - 
cosWyS3b)) 

2cosh y 66 - y)> 

[s2cx)> s3091pB = sl (x)~b - y). (34) 

[s3cx), s1 (Y)lpB = s26)6tx - Y). 

The symplectic form is given by 

w= _poshy 
sinh y 

Sl (x)6Sz(x) A 8S3@) 

N 

+ ~2@)~~3@) A as1 (x) 

+ sinhCV&(x)) 
Y coshGyS3(x)) 

~SI 6) A SS:!(x) 1 Q.(x). (35) 

Using formulae (1 l), (5) and (lo), other examples of current extended Poisson algebras 
and related symplectic structures associated with current manifolds can be constructed in 
a similar way. For instance one may check that to the “current manifold of the one sheet 
hyperboloid” defined by S:(x) + S:(x) - S:(x) = constant there belongs the current 
extension of the well known Poisson SU (1, 1) algebra. 

5. Poisson current algebraic maps 

From the above we see that the current algebras which are defined as maps from a compact 
manifold N to an algebra with three generators are related, via symplectic geometry, to 
certain current manifolds and vice versa. Therefore it is convenient to investigate current 
algebraic maps by using the associated current manifolds. 

Let A0 and Ah be algebras with three generators. Let N and N’ be (Riemannian) manifolds 
smoothly embedded in R3 such that D 3 N n N’ # @. Let A and A’ be current algebras 
of mappings from N and N’ to A0 and Ah, respectively. Let S s Si (x) (resp. S’ = S;(x)), 
i = 1, 2, 3, x E D, be the generators of the current algebra A (resp. A’), with corresponding 
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current manifolds F(S) = 0 (resp. F’(S’) = 0) defined by a certain smooth real-valued 

function F (resp. F’). 

Theorem 4. s(S) E (ji(X), i = 1,2,3; x E D) generates A’ ifs3 saris-es [F’(s) = 0. 
where E’(s) = 1, F’(S) dp and [F(S) = SD F(S) dp = 0. 

Proo$ Let MD be the manifold defined by the equation F(S(x)) = 0, x E D and Mb the 
manifold defined by the equation F’(S’(x)) = 0, x E D. If S satisfies [F’(S) = 0, then from 
Theorem 1 &? gives rise to the current algebra A’. 

Conversely we have to prove that if S(S) generates the current algebra A’ by using the 
algebraic relations of S, then S satisfies the equation E’(S) = 0. 

Due to the relation F(S) = 0, the Si, i = 1 .2.3, are not independent. Since F(S) = 0 
is assumed to be a two-dimensional manifold, we can take, without losing generality, Sr , 
Sz to be the independent variables. For f, g E F(hfD), Theorem 2 says that the Poisson 
bracket of f and g is given by 

dp(Y). (36) 

From Theorem I the Poisson current algebra A’ is given by (11) with S replaced by S 
and [F by [F’. On the other hand from (36), the Poisson algebraic relations of Si (x) are 

[%(x)3 $(Y)IPB 

SSi(X) SSj(Y) 
----- 

8S2(z) 6.5 (z) 
dF(z). 

Taking into account that (as generalized functions) 

(37) 

SSi (X) 

SSj (Y) 
= Si, j (X)6(X - Y) 

(where Si,j (x) is the function of x obtained by evaluating the derivative of the function Si 
of S’ with respect to Sj at x), we get from (11) (with the above replacements) and (37): 

-- - 6(x - Y) 
Y 

By integrating with respect to dp(y) above equations for i = 1, j = 2 resp. i = 2, j = 3 
resp. i = 3, ,j = 1 and multiplying the so-obtained equations by SS;(x)/8&(z) resp. 
SS; (X)/&Sk(Z) resp. 8S;(X)/8Sk(z), summing then these equations together and finally 
integrating with respect to dp(x), we get 
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85’(S) 
___ = 0. k=l.2. VZED 
SSI, (Z) 

Therefore [F’(S) =constant. This is equivalent to the current manifold IF’(S) = 0 for the 
algebra A’, since a constant term does not change the current algebras associated with the 
manifold. u 

We give two examples of Poisson current algebraic maps. Eqs. (24) and (27) give algebraic 
maps between the current extended algebras of SU(2) and SU,(2), 

where S&(x) = St (x) f i&(x). It is easy to check by using the relations (25) that S;(x), 
S;(x) satisfy (28). They also satisfy (27) as seen by using (24). 

The maps relating the generators of the current algebras of X(4) to those of ‘I&,(4) can 
be obtained from the related manifolds (30) and (33). For instance, 

Sk(x) = sinh v(&(x) + l/2) 

(&(x) + 1/2)Y 
S+(x). 

S’(x) = coshy(&(x) - l/2)s_(x) 
cash y 

S;(x) = G(x), 

(39) 

where S%(x) and &(x) are the generators of the current algebra ‘F1(4) satisfying relations 
(31). Si(x) and S;( x ) are the generators of the current algebra ‘H,(4) satisfying relations 
(34). We also see that S&(x), &(x) satisfy (30) and S;(x), S{(x) satisfy (33). 

Similarly, the corresponding maps for other current extended algebras such as SU ( 1. 1) 
and SU, ( I, 1) can be studied by investigating their related current manifolds. 

6. Geometric quantization of current algebras 

Towards geometric quantization one has to construct a linear monomorphism from the 
Poisson algebra of (MN. w) to the space of linear operators on an appropriate space by 
constructing the prequantization line bundle I!, and introduce a suitable polarization P (cf. 

L11,121). 
In the following we take the current extended algebra of SU(2) as an example. As is 

shown in Section 4 this algebra is related to the current 2D sphere defined by Eq. (24). Let 
S* denote the latter manifold. We set up a complex structure on S* by introducing two open 
sets U+ = {Z E S2 ISo i Ss(z) # O] and two complex functions z+(x) and z_(x), x E N, 
on I/+ and CT_, respectively, 

z+(x) = 
SI 6) F is2W 

So f &(x) 

In U+ n I/_ we have Z+(X):_(X) = I. 

(40) 
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From (40) we get the expressions of S;(x), i = 1.2.3, in terms of Z+(X) and Z-(X), 

sl (x) = so z*(x) + Z*(x) 
1 + z+ (X)2& w ’ 

s2(x) = *iSo Z&(X> -‘*(x) 
1 + z+ (XL (x> 

S3(x) = f&l 
1 - &(X),7&(X) 

1 + Z&(X)Z&(X) 

The symplectic form (26) becomes 

wlU+ = s -2iSe 

(1 + Z*(x)%(x))2 
s?*(x) A C%(X) dk(x). 

N 

(41) 

(42) 

There is a locally defined one form 0 s.t. defining & = B 1 U* one has M+ = WI U* and 

& = s -2iSo 

1 + z* (x)Z* (x) 
&(x)&~(x) dp(x). 

N 

The Hamiltonian vector fields of Si (x) now take the form 

Xs,,,,IU* = -; k:(x) - P&j [ + (1 --:(x))L- 
I 6z*(x) ’ 

XS2(x)IUf = kf &> + vj-& 
[ 

+ (1 +&x))S 
I 6z*(x) ’ 

XS~(~) IUi = hi 
( 
i*(x)& - 

s 
z*(x)--- 

k*(x) 1 

(43) 

(44) 

We suppose that the manifold N has finite volume V. The prequantization line bundle 
L exists if and only if the de Rham cohomology class [-V-‘h-‘w] of -V-‘h-‘w is 
integrable [ 121. This leads to the relation 

-V-‘h-1 
s 

w = 2.j. 2j E P+J. 

s’ 

Hence we have SO = jtZ. In the following discussions we shall, for simplicity, set t2 = 1 
We take, as a suitable polarization, the linear frame fields of Z&(X), 

X ‘*(x, = (2iSo)-‘(1 + Z*(x)-+(x))‘&. 

On U+ n U_, z+(x) # 0, we have X,_(,, = -~_t’(x)X~+~,, Hence, XZtCxJ and X,_Cx, span 
a complex distribution P on S’ and P is a polarization of the symplectic manifold (S’, w). 
Moreover, 

idXr+(xjT Xzfcxj ) = &(l + z*(x)%*(x))’ > 0. 
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This means that (adapting a detinition from [ 121) P is a complete strongly admissible 
positive polarization of (S2. (1)) (in the sense of generalized functions). 

From Eqs. (41) and (44) wc obtain, applying methods analogous to the ones of finite- 
dimensional geometric quantization, the following definition of the corresponding quantum 
operators: 

6 $(x),U* = -&(x) - l)- 
62*(x) 

+ .jz+(x). 

s 
S*(x)IU* = f&(X) + l)- 

Jz*(x) 
* i.jzi(x). 

&(x)(U* = * 
( 

6 
-z*(x) -+,j 

6z+ (xl J 

as operators acting on some space F of functionals of z*. They give rise to the quantum 
current extended algebra of SU(2), 

[S+(x), Qy)l = 2&wm - y), 

&(X)> S*(Y)1 = ~S*(xV(x -Y). 
(46) 

where S*(x) = St(x) f i&.(x) ([A, B] denotes AB - BA). These relations have to be 
understood in the sense of operator-valued generalized functions, the operators acting in FT. 

To pass to a q-version it is useful to discretize the N-manifold (avoiding in this way 
some divergences which arise in the following computations in the continuous case). We 
thus replace N by a discretized version of it, Nd. In this case we get from (45) for any 

XE Nd, 

(j + $2 = S+(x)S_(x) + (Sq(x) - $)? (47) 

This relation gives a “quantum mechanical” analogue of the sphere S*. 
The geometric quantization of the current algebra of SUq(2) can be studied in a similar- 

way. Let Si denote the manifold defined by Eq. (27). Then the prequantization line bundle 

on (Sq’. w) exists iff when -V -‘h-’ ,/‘I w = 2j, 2j E N, where w is given by formula 

(29). This leads to an S, in (27) which tikes the form (for y # 0) 

sinh y SO sinh yj 

s’=J*=ds. 

By geometric quantization (in a sense similar as above) we have the quantum operators of 
the current extended algebra of SU,(2): 

A 1 
&HIV+ = Js(A+ + B+), 

(48) 
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&(x)IV* = f ( -c*(x)& + .i ’ ) 
where 

Ai E cash ;ri(x) &)z*(x)sinh(i (-&(x)&+?i))* 

& E cash ; (-z*(x) L+?j) &sinh(jr*(x)&) 
8,7,t(x) 

(in the sense of operator-valued generalized functions), where the open sets V& on Si is 
defined by 

They satisfy (in a similar sense as above) the commutation relations of the current ex- 
tended quantum algebra of SU, (2), 

sinh(y) sinh 2y&(x) rj+ (x), j- (Y)l = ~ 
sinh y 

6(x - Y)> 

[G(x), i*(y)1 = &)S(x - Y). 

(49) 

where i*(x) = jt (x) f i&(x), X, 4’ E Nd. This quantum current algebra is isomorphic to 
the classical Poisson current algebra (28). One may redefine s*(x) by multiplying it by a 
constant factor Jm so as to get the usual form of commutation relations. 

In terms of expressions (48) and (49) the quantum operators satisfy the following equation: 

j (x)i_ (x) + sinh2 Y (& 6) - l/2) sinh* y(j + l/2) 
+ = y sinh y y sinh y ’ 

(50) 

This is the quantum version of the manifold (27). 
The quantization of other current algebras can be discussed in a similar way. In addition, 

the quantum current algebraic maps can be obtained from the quantum version of the related 
manifolds. For instance, let if(x) (resp. $(x)) be the quantum operators of the quantum 
current algebra of SU(2) (resp. SU,(2)) satisfying Eq. (47) (resp. (50)). We set ,!$(x) = 

&(x). Then Eq. (50) can be rewritten as 

$_(x)3(x) = 
sinh2 y (j + l/2) sinh* y(&(x) - l/2) 

- y sinh y y sinh y 

1 . 

= l/xS+(X) 

sinh y(j - &(x)) 

j - ix(x) 

1 . sinh y(j + $3(x)) 

x.J*SP(x) j+&(x) ’ 

where Eq. (47) has been used. Hence we have 



Therefore from the “quantum” current manifold (47) of the current extended quantum 
algebra SCI(2) and the “quantum” current manifold (50) of the current extended quan- 
tum algebra SU,(2), we get the quantum algebraic maps from the current extended al- 
gebras SU(2) to SU,(2), which are formally the same as the classical Poisson algebraic 
maps (38). Here S;.*(x) satisfy relations (50) while S?,*(x) satisfy (47). as guaranteed by 
Theorem 3. 

7. Conclusion and remarks 

We have shown that there is a one-to-one correspondence (up to algebraic equivalence) 
between Poisson current algebras of maps from a (Riemannian) manifold N to Poisson 
algebras with three generators and current manifolds MN (with dim M = 2). This gives 
rise to a general description of such Poisson current algebras resp. their quantum versions. 
A geometric meaning of q-deformation of such current algebras emerges in terms of the 
corresponding q-deformation of the current manifolds resp. their quantum versions. Maps 
between two Poisson current algebras (resp. quantum current algebras) can be simply han- 
dled in terms of their associated current manifolds (resp. the quantum versions of these 
current manifolds). 

The Hopf structures (for this concept see e.g. [ 191) of current extended algebras can be 
studied by the quantum operators of these algebras. Here we give the Hopf structure for the 
current extended algebra of SU, (2): 

A&(X)) = &(x) C3 1+ 163 &(x), 
A(S*(x)) = S*(x) @ eCys3(‘) + e-ysi(x) @ S&(x), 

E(1) = 1, E(i*,(X)) = E(&(X)) = 0. 
q(j*(x) = _eY8-itx)~*(x)e-Ys3(x) v&(x)) = -h(x), 

(52) 

where A, q and E are coproduct, antipode and counit operations, respectively. These opera- 
tions conserve the quantum current algebraic relations (49). When the deformation parame- 
ter v approaches zero, (52) becomes formally the Hopf algebraic structures of the quantum 
current extended algebra of SU(2) and the comultiplication becomes commutative. 

In this paper we have obtained the quantum operators associated with the current ex- 
tended algebras through geometric quantization. In particular we have constructed here 
a representation of the current extended quantum algebra SU,(2), see (49). Representa- 
tions of the current extended quantum algebras can also be obtained in the form of highest 
weight representations based on continuous tensor product representations [20]. It would be 
interesting to study the relations between the latter representations and the representations 
obtained in this paper. In addition, by generalizing the 2D current manifolds to Grass- 
mannian manifolds, one can discuss BRST structures on 2D current manifolds in terms of 
symplectic geometry and geometric quantization, extending the work we have done before 
for 2D manifolds (2 11. 
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